Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
1.
Cell Transplant ; 33: 9636897241244943, 2024.
Article in English | MEDLINE | ID: mdl-38695366

ABSTRACT

Multipotent mesenchymal stem cells (MSCs) have high self-renewal and multi-lineage differentiation potentials and low immunogenicity, so they have attracted much attention in the field of regenerative medicine and have a promising clinical application. MSCs originate from the mesoderm and can differentiate not only into osteoblasts, cartilage, adipocytes, and muscle cells but also into ectodermal and endodermal cell lineages across embryonic layers. To design cell therapy for replacement of damaged tissues, it is essential to understand the signaling pathways, which have a major impact on MSC differentiation, as this will help to integrate the signaling inputs to initiate a specific lineage. Hedgehog (Hh) signaling plays a vital role in the development of various tissues and organs in the embryo. As a morphogen, Hh not only regulates the survival and proliferation of tissue progenitor and stem populations but also is a critical moderator of MSC differentiation, involving tri-lineage and across embryonic layer differentiation of MSCs. This review summarizes the role of Hh signaling pathway in the differentiation of MSCs to mesodermal, endodermal, and ectodermal cells.


Subject(s)
Cell Differentiation , Hedgehog Proteins , Mesenchymal Stem Cells , Signal Transduction , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hedgehog Proteins/metabolism , Humans , Cell Differentiation/physiology , Animals , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism
2.
Am J Cancer Res ; 14(4): 1815-1830, 2024.
Article in English | MEDLINE | ID: mdl-38726290

ABSTRACT

Recent studies have indicated that the dual-specificity phosphatases (DUSP) family may play a role in the advancement of pancreatic cancer. Exploring the role of the DUSP family in pancreatic cancer development and discovering novel therapeutic targets are crucial for pancreatic cancer therapy. A critical subset of 20 genes exhibiting differential expression was identified, with particular emphasis on four key genes: DUSP10, PTP4A2, SSH3, and CDKN3 by multivariate Cox proportional hazards analysis. These genes were integral to developing a novel risk model for PC, which has been independently validated as a prognostic factor for patients. To provide help for clinical treatment, we performed tumor immune analysis and predicted potential chemical drugs. Notably, our research unveiled elevated expression levels of SSH3 in human PC cells and tissues. Intriguingly, SSH3 expression correlates with the patient grade, staging, and T stage in PC. Additional studies reveal SSH3's role in enhancing PC cell proliferation and migration, intricately linked to the activation of the Notch signaling pathway. These insights provide a deeper understanding of PC pathophysiology and pave the way for novel therapeutic interventions.

3.
Carbohydr Polym ; 337: 122188, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710565

ABSTRACT

Growing plants in karst areas tends to be difficult due to the easy loss of water and soil. To enhance soil agglomeration, water retention, and soil fertility, this study developed a physically and chemically crosslinked hydrogel prepared from quaternary ammonium guar gum and humic acid. The results showed that non-covalent dynamic bonds between the two components delayed humic acid release into the soil, with a release rate of only 35 % after 240 h. The presence of four hydrophilic groups (quaternary ammonium, hydroxyl, carboxyl, and carbonyl) in the hydrogel more than doubled the soil's water retention capacity. The interaction between hydrogel and soil minerals (especially carbonate and silica) promoted hydrogel-soil and soil­carbonate adhesion, and the adhesion strength between soil particles was enhanced by 650 %. Moreover, compared with direct fertilization, this degradable hydrogel not only increased the germination rate (100 %) and growth status of mung beans but also reduced the negative effects of excessive fertilization on plant roots. The study provides an eco-friendly, low-cost, and intelligent system for soil improvement in karst areas. It further proves the considerable application potential of hydrogels in agriculture.


Subject(s)
Galactans , Humic Substances , Hydrogels , Mannans , Plant Gums , Quaternary Ammonium Compounds , Soil , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Hydrogels/chemistry , Soil/chemistry , Quaternary Ammonium Compounds/chemistry , Fertilizers , Delayed-Action Preparations/chemistry , Germination/drug effects , Water/chemistry
4.
Int J Biol Macromol ; 267(Pt 2): 131536, 2024 May.
Article in English | MEDLINE | ID: mdl-38608993

ABSTRACT

Cellulosic hydrogels are widely used in various applications, as they are natural raw materials and have excellent degradability. However, their poor mechanical properties restrict their practical application. This study presents a facile approach for fabricating cellulosic hydrogels with high strength by synergistically utilizing salting-out and ionic coordination, thereby inducing the collapse and aggregation of cellulose chains to form a cross-linked network structure. Cellulosic hydrogels are prepared by soaking cellulose in an Al2(SO4)3 solution, which is both strong (compressive strength of up to 16.99 MPa) and tough (compressive toughness of up to 2.86 MJ/m3). The prepared cellulosic hydrogels exhibit resistance to swelling in different solutions and good biodegradability in soil. The cellulosic hydrogels are incorporated into strain sensors for human-motion monitoring by introducing AgNWs. Thus, the study offers a promising, simple, and scalable approach for preparing strong, degradable, and anti-swelling hydrogels using common biomass resources with considerable potential for various applications.


Subject(s)
Cellulose , Hydrogels , Hydrogels/chemistry , Cellulose/chemistry , Compressive Strength , Humans , Ions/chemistry
5.
RSC Adv ; 14(11): 7609-7615, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38444979

ABSTRACT

In this study, the effect of the green liquor (GL)-sulfite pretreatment on bamboo for enzymatic hydrolysis was investigated. The performance characterization of the pretreated bamboo substrates, including the chemical composition, and the structural characteristics was carried out. The results showed that 91.3% of lignin removal was achieved when the sample was treated with a GL loading of 12.0 mL per g-DS at 120 °C for 1 h. After 120 h hydrolysis with 18 FPU per g-cellulose for cellulase and 27 CBU per g-cellulose for glucosidase, the glucose yield increased from 54.6% to 89.6%. The SE-treated bamboo could bind more easily to cellulase than GL-sulfite treated bamboo could. The structural changes on the surface of the samples were characterized by SEM. The results indicated that the surface lignin could be effectively removed during pretreatment, thereby decreasing the enzyme-lignin binding activity.

6.
Eur J Immunol ; 54(5): e2350730, 2024 May.
Article in English | MEDLINE | ID: mdl-38430202

ABSTRACT

Sepsis, a multiorgan dysfunction with high incidence and mortality, is caused by an imbalanced host-to-infection immune response. Organ-support therapy improves the early survival rate of sepsis patients. In the long term, those who survive the "cytokine storm" and its secondary damage usually show higher susceptibility to secondary infections and sepsis-induced immunosuppression, in which regulatory T cells (Tregs) are evidenced to play an essential role. However, the potential role and mechanism of Tregs in sepsis-induced immunosuppression remains elusive. In this review, we elucidate the role of different functional subpopulations of Tregs during sepsis and then review the mechanism of sepsis-induced immunosuppression from the aspects of regulatory characteristics, epigenetic modification, and immunometabolism of Tregs. Thoroughly understanding how Tregs impact the immune system during sepsis may shed light on preclinical research and help improve the translational value of sepsis immunotherapy.


Subject(s)
Immune Tolerance , Sepsis , T-Lymphocytes, Regulatory , Humans , Sepsis/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Immune Tolerance/immunology , Epigenesis, Genetic/immunology , Immunosuppression Therapy , Immunotherapy/methods
7.
Int J Biol Macromol ; 263(Pt 2): 130335, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403215

ABSTRACT

The electrospinning technology has set off a tide and given rise to the attention of a widespread range of research territories, benefiting from the enhancement of nanofibers which made a spurt of progress. Nanofibers, continuously produced via electrospinning technology, have greater specific surface area and higher porosity and play a non-substitutable key role in many fields. Combined with the degradability and compatibility of the natural structure characteristics of polysaccharides, electrospun polysaccharide nanofiber membranes gradually infiltrate into the life field to help filter air contamination particles and water pollutants, treat wounds, keep food fresh, monitor electronic equipment, etc., thus improving the life quality. Compared with the evaluation of polysaccharide-based nanofiber membranes in a specific field, this paper comprehensively summarized the existing electrospinning technology and focused on the latest research progress about the application of polysaccharide-based nanofiber in different fields, represented by starch, chitosan, and cellulose. Finally, the benefits and defects of electrospun are discussed in brief, and the prospects for broadening the application of polysaccharide nanofiber membranes are presented for the glorious expectation dedicated to the progress of the eras.


Subject(s)
Chitosan , Nanofibers , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Polysaccharides/chemistry , Starch
9.
ACS Appl Mater Interfaces ; 16(5): 6523-6532, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38275160

ABSTRACT

Thermosetting foams have limited capabilities for recycling, reprocessing, or reshaping. Moreover, most of the foaming agents currently employed in these foams are derived from organic compounds sourced from petrochemicals, thereby posing a significant environmental threat due to heightened pollution. To solve these problems, a fully biobased degradable vitrimer foam (EPC-X) was fabricated using an environmentally friendly all-in-one foaming strategy by cross-linking epoxidized malepimaric anhydride (EMPA), 1,5-diaminopentane (PDA), and 1,5-diaminopentane carbamate (PDAC) as a latent curing-blowing agent. To our delight, the vitrimer foams exhibit excellent mechanical properties (2.86 ± 0.11 MPa compressive strength) owing to their unique rigid rosin backbone and cross-linking networks. The presence of dynamic ß-hydroxy ester bonds and the self-catalytic behavior of tertiary amine groups facilitate network rearrangement without requiring additional catalysts, thereby resulting in the development of EPC-X with rapid self-healing and shape memory properties. The self-healing foam could support a weight of 500 g (approximately 562 times its own mass). Moreover, these high-performance vitrimer foams can also be easily degraded in an ethanolamine (EA) or NaOH solution under mild conditions. Such a design strategy offers an alternative approach for developing superior degradable and thermal stimuli-responsive thermosetting foams.

10.
J Chromatogr A ; 1715: 464629, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38183782

ABSTRACT

Rosin-based chromatographic columns are widely used for separation purposes, but, to date, their phase ratios (Φ) have been imprecisely measured. This affects the understanding of their separation mechanism and the calculation of related thermodynamic parameters. In this study, a stationary phase was synthesized by bonding dehydroabietic acid (DA) to silica gel (Si-DO) and applied for reversed-phase liquid chromatography. The distribution coefficient (Kdm) of methyl dehydroabietate (MD), which has the same structure as the bonded phase of Si-DO, was used as a surrogate for the determination of the equilibrium coefficient (K) of Si-DO, and the Kdm values of MD in different mobile phases were measured and compared with the K values of Si-DO. It was found that the phase ratio of Si-DO varied with mobile phase composition and temperature, as shown by the Φ values: 0.039-0.122 for the methanol/water system and 0.051-0.116 for the acetonitrile/water system; in addition, the a indices were 0.552-0.757 and 0.564-0.674, respectively. The Kdm of MD was closer to the K of Si-DO than those of other surrogate models, including the octanol-water and octane-mobile phase partition coefficients. In addition, the thermodynamic parameters (ΔG°, ΔH°, and ΔS°) of n-alkylbenzenes on Si-DO were negative, indicating a spontaneous and enthalpy-driven separation process. Overall, the phase ratio of rosin-based columns is crucial for accurate thermodynamic analysis and interpretation of the separation mechanism. Finally, the MD surrogate model allows the estimation of phase ratio of Si-DO and other similar columns, providing a novel method for measuring the phase ratio of rosin-based columns and providing a validated concept and methodology for determining the phase ratios of HPLC columns.


Subject(s)
Methanol , Silicon Dioxide , Silicon Dioxide/chemistry , Thermodynamics , Methanol/chemistry , Water/chemistry , Chromatography, Reverse-Phase/methods , Chromatography, High Pressure Liquid/methods
11.
Carbohydr Polym ; 327: 121653, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171675

ABSTRACT

Fenugreek (Trigonella foenum-graecum L) galactomannan play an important role in the food and pharmaceutical sectors due to its attractive physicochemical properties. In this study, the changes of structure, properties and biological activity of fenugreek galactomannan (FG) during germination are analyzed by the activity and mechanism of endogenous enzymes (α-D-galactosidase and ß-D-mannanase). The enzymes generally increased during germination and synergistically altered the structure of GM by cutting down the main chains and removing partial side residues. The mannose to galactose ratio (M/G) increased from 1.11 to 1.59, which is accompanied by a drastic decrease in molecular weight from 3.606 × 106 to 0.832 × 106 g/mol, and the drop of viscosity from 0.27 to 0.06 Pa·sn. The degraded macromolecules are attributed to the increase in solubility (from 64.55 % to 88.62 %). In terms of antioxidation and antidiabetic ability, germinated fenugreek galactomannan has the ability to scavenge 67.17 % ABTS free radicals and inhibit 86.89 % α-glucosidase. This galactomannan with low molecular weight and excellent biological activity precisely satisfies the current demands of pharmaceutical reagents and food industry. Seeds germination holds promise as a means of industrial scale production of low molecular weight galactomannans.


Subject(s)
Trigonella , Trigonella/chemistry , Seeds/chemistry , Mannans/chemistry , Plant Extracts/pharmacology , Galactose/analysis
12.
Food Res Int ; 176: 113798, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163709

ABSTRACT

Camellia oleifera cake is a by-product, which is rich in functional chemical components. However, it is typically used as animal feed with no commercial value. The purpose of this study was to isolate and identify compounds from Camellia oleifera cake using a combination of foam fractionation and high-speed countercurrent chromatography (HSCCC) and to investigate their biological activities. Foam fractionation with enhanced drainage through a hollow regular decahedron (HRD) was first established for simultaneously enriching flavonoid glycosides and saponins for further separation of target compounds. Under suitable operating conditions, the introduction of HRD resulted in a threefold increase in enrichment ratio with no negative effect on recovery. A novel elution-extrusion countercurrent chromatography (EECCC) coupled with the consecutive injection mode was established for the successful simultaneous isolation of flavonoid glycosides and saponins. As a result, 38.7 mg of kaemferol-3-O-[2-O-D-glucopyranosyl-6-O-α-L-rhamnopyranosyl]-ß-D-glucopyranoside (purity of 98.17%, FI), 70.8 mg of kaemferol-3-O-[2-O-ß-D-xylopyranosyl-6-O-α-L-rhamnopyranosyl]-ß-D-glucopyranoside (purity of 97.52%, FII), and 560 mg of an oleanane-type saponin (purity of 92.32%, FIII) were separated from the sample (900 mg). The present study clearly showed that FI and II were natural antioxidants (IC50 < 35 µg/mL) without hemolytic effect. FIII displayed the effect of inhibiting Hela cell proliferation (IC50 < 30 µg/mL). Further erythrocyte experiments showed that this correlated with the extremely strong hemolytic effect of FIII. Overall, this study offers a potential strategy for efficient and green isolation of natural products, and is beneficial to further expanding the application of by-products (Camellia oleifera cake) in food, cosmetics, and pharmacy.


Subject(s)
Camellia , Cytostatic Agents , Saponins , Humans , Animals , Countercurrent Distribution/methods , Antioxidants/pharmacology , Cytostatic Agents/analysis , Camellia/chemistry , HeLa Cells , Glycosides/chemistry , Saponins/analysis , Flavonoids/analysis
13.
Int J Biol Macromol ; 259(Pt 2): 129262, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199559

ABSTRACT

XOS production from lignocellulose using organic carboxylic acids and alkyd acids has been widely reported. However, it still faces harsh challenges such as high energy consumption, high cost, and low purity. Pyruvic acid (PYA), a carbonyl acid with carbonyl and carboxyl groups, was used to produce XOS due to its stronger catalytic activity. In this work, XOS was efficiently prepared from COS in an autoclave under the condition of 0.21 M PYA-121 °C-35 min. The total yield of XOS reached 68.72 % without producing any toxic by-products, including furfural (FF) and 5-hydroxymethylfurfural (5-HMF). The yield of xylobiose (X2), xylotriose (X3), xylotetraose (X4), and xylopentaose (X5) were 20.58 %, 12.47 %, 15.74 %, and 10.05 %, respectively. Meanwhile, 89.05 % of lignin was retained in the solid residue, which provides a crucial functional group for synthesizing layered carbon materials (SRG-a). It achieves excellent electromagnetic shielding (EMS) performance through graphitization, reaching -30 dB at a thickness of 2.0 mm. The use of a PYA catalyst in the production of XOS has proven to be an efficient method due to lower temperature, lower acid consumption, and straightforward operation.


Subject(s)
Camellia , Pyruvic Acid , Temperature , Hydrolysis , Oligosaccharides/chemistry , Glucuronates/chemistry , Acids
14.
Int J Biol Macromol ; 259(Pt 2): 129235, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211916

ABSTRACT

Three green non-enzymatic catalysis pretreatments (NECPs) including autohydrolysis, subcritical CO2-assisted seawater autohydrolysis, and inorganic salt catalysis were utilized to simultaneously produce xylo-oligosaccharides (XOS), glucose, and cellulolytic enzyme lignin (CEL) from sugarcane bagasse (SCB). The yield of XOS in all three NECPs was over 50 % with a competitive glucose yield of enzymatic hydrolysis. And the effects of different pretreatments on the chemical structure and composition of CEL samples were also investigated. The pretreatments significantly increased the thermal stability, yield, and purity of the CEL samples. Moreover, the net yield of lignin was 58.3 % with lignin purity was 98.9 % in the autohydrolysis system. Furthermore, there was a decrease in the molecular weight of CEL samples as the pretreatment intensity increased. And the original lignin structural units sustained less damage during the NECPs, due to the cleavage of the ß-O-4 bonds dominating lignin degradation. Meanwhile, these pretreatments increased the phenolic-OH in CEL samples, making the lignin more reactive, and enhancing its subsequent modification and utilization. Collectively, the described techniques have demonstrated practical significance for the coproduction of XOS and glucose, and lignin, providing a promising strategy for full utilization of biomass.


Subject(s)
Lignin , Saccharum , Lignin/chemistry , Cellulose/chemistry , Glucose/metabolism , Biomass , Saccharum/chemistry , Oligosaccharides/chemistry , Hydrolysis
15.
Int J Biol Macromol ; 257(Pt 1): 128627, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070803

ABSTRACT

Biodegradable liquid mulch is considered a promising alternative to plastic mulch for sustainable agriculture. This work proposed a xyloglucan-based liquid mulch with multi-function using a combination of chemical modification and blending methods. The esterification product of tamarind xyloglucan (TXG) from forestry wastes was synthesized with benzoic anhydride (BA). The effect of esterification modification was investigated, and BA-TXG was utilized as a film-forming and sand-fixation agent. The rheological properties, thermal stability, and hydrophobicity were improved following esterification. Additionally, waterborne polyurethane and urea were incorporated into the mulch to enhance its mechanical strength (23.28 MPa, 80.71 %), and homogeneity, as well as improve its nutritive properties. The xyloglucan-based liquid mulch has excellent UV protection, a high haze value (approximately 90 %), and retains water at a rate of 80.45 %. SEM and immersion experiment showed the effect of xyloglucan-based liquid mulch on sustainable sand-fixation. Moreover, the liquid mulch treatment demonstrated an impressive germination rate of 83.8 % and degradation rate of 51.59 % (60 days). The modified polysaccharide film increases stability and slows down the degradation rate. Tamarind xyloglucan-based liquid mulch exhibits powerful and diverse optical properties as well as sand fixation functions, indicating their great potential in sustainable agriculture as an alternative to plastic mulch.


Subject(s)
Tamarindus , Xylans , Sand , Agriculture , Glucans , Soil/chemistry
16.
Langmuir ; 40(1): 647-656, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38153972

ABSTRACT

Natural small molecules have demonstrated tremendous potential for the construction of supramolecular chiral nanostructures owing to their unique molecular structures and chirality. In this study, novel CO2-responsive supramolecular hydrogels were constructed using a series of rosin-based surfactants (CnMPAN, n = 10, 12, and 14). The macroscopic properties, rheological properties, nanostructures, and intermolecular interactions of the hydrogels were investigated using differential scanning calorimetry, rotational rheometry, cryogenic transmission electron microscopy, and Fourier transform infrared spectroscopy. Interestingly, diverse nanostructures containing helical nanofibers, interwoven nanofibers, and twisted nanoribbons were formed in the hydrogels, which were rarely observed in reported supramolecular hydrogels, and the strength of the hydrogels was significantly enhanced by increasing the CnMPAN concentration and the alkyl chain length. The obtained hydrogels exhibited excellent CO2-responsiveness, with no obvious variation in the nanostructures and rheological properties after response to CO2/N2 for five cycles. Taking advantage of the chiral nanostructures of hydrogels, gold nanoparticles (GNPs) were further prepared. The average particle sizes of the resulting GNPs were as low as 2.5 nm, and the GNPs also had a chiral structure. It is worth noting that no additional reductants and UV-light irradiation were used during the reduction process of GNPs. This study emphasizes that the unique molecular structure and chirality of rosin are critical for the preparation of hydrogels with chiral nanostructures. In addition, this study enriches the applications of forest resources.

17.
Food Chem ; 440: 138313, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38159317

ABSTRACT

The physicochemical and foam properties of non-purified water extracts (WE) and purified tea saponins (TS) from Camellia oleifera cake (byproduct) were compared. WE showed different fluid properties at equal saponin concentrations (1.0 wt%) compared to TS. Particularly, it exhibited limited micelle size (average 434.1 nm), effective viscosity (0.15 Pa·s), and surface tension (43.9 mN/m) independently of pH. Moreover, the foam properties of WE were comparable to TS and better than sodium caseinate, especially foam stability. WE foam was more stable than TS foam under pH (3-7) and heating (40-80 °C). In the presence of NaCl, sucrose, and ethanol (5-20 wt%), WE and TS were effective and had similar foam behavior. Low concentrations of sucrose (<10 wt%)/ethanol (<20 wt%) significantly increased the foam capacity, while ethanol over 30 wt% was unfavorable. WE/TS foam contributes significantly to the desired physicochemical and sensory attributes (taste, texture, and appearance) of foods.


Subject(s)
Camellia , Saponins , Camellia/chemistry , Saponins/chemistry , Water , Ethanol , Sucrose
18.
ACS Omega ; 8(34): 31436-31449, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663483

ABSTRACT

Liposomes are considered the best nanocarrier for delivering cancer drugs such as chlorin e6 (Ce6) and paclitaxel (PTX). However, the poor stability and non-selectivity release of liposomes may severely limit their further applications. In this study, based on the characteristics of lutein (L) photo-response and orthoester (OE) acid-response, stable and dual-responsive liposomes (Dr-lips) have been prepared. The Dr-lips exhibited a spherical shape with a uniform size of approximately 58.27 nm. Moreover, they displayed a zeta potential ranging from -45.45 to -28.25 mV and showed excellent storage stability, indicating stable colloidal properties. Additionally, they achieved high drug encapsulation rates, with 92.27% for PTX and 90.34% for Ce6, respectively. Meanwhile, under near-infrared (NIR) light at 660 nm, Ce6 plays a key role in accelerating the photodegradation rate of lutein and PEG-OE-L while also enhancing tissue penetration ability. Additionally, Dr-lips loaded with Ce6 and PTX not only displayed excellent pH and photo dual-responsiveness for targeted delivering and releasing but also showed remarkable reactive oxygen species (ROS) generation capacity and impressive anti-tumor activity in vitro. Therefore, it provides a novel strategy for optimizing stability and enhancing their targeted drug delivery of liposome.

19.
Respir Res ; 24(1): 227, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741976

ABSTRACT

BACKGROUND: Functional alveolar regeneration is essential for the restoration of normal lung homeostasis after acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Lung is a relatively quiescent organ and a variety of stem cells are recruited to participate in lung repair and regeneration after lung tissue injury. However, there is still no effective method for promoting the proliferation of endogenous lung stem cells to promote repair and regeneration. METHODS: Using protein mass spectrometry analysis, we analyzed the microenvironment after acute lung injury. RNA sequencing and image cytometry were used in the alveolar epithelial type 2 cells (AEC2s) subgroup identification. Then we used Sftpc+AEC2 lineage tracking mice and purified AEC2s to further elucidate the molecular mechanism by which CTGF regulates AEC2s proliferation both in vitro and in vivo. Bronchoalveolar lavage fluid (BALF) from thirty ARDS patients who underwent bronchoalveolar lavage was collected for the analysis of the correlation between the expressing of Krt5 in BALF and patients' prognosis. RESULTS: Here, we elucidate that AEC2s are the main facultative stem cells of the distal lung after ALI and ARDS. The increase of connective tissue growth factor (CTGF) in the microenvironment after ALI promoted the proliferation of AEC2s subpopulations. Proliferated AEC2s rapidly expanded and differentiated into alveolar epithelial type 1 cells (AEC1s) in the regeneration after ALI. CTGF initiates the phosphorylation of LRP6 by promoting the interaction between Krt5 and LRP6 of AEC2s, thus activating the Wnt signaling pathway, which is the molecular mechanism of CTGF promoting the proliferation of AEC2s subpopulation. CONCLUSIONS: Our study verifies that CTGF promotes the repair and regeneration of alveoli after acute lung injury by promoting the proliferation of AEC2s subpopulation.


Subject(s)
Acute Lung Injury , Connective Tissue Growth Factor , Respiratory Distress Syndrome , Animals , Humans , Mice , Cell Proliferation , Connective Tissue Growth Factor/genetics , Pulmonary Alveoli , Regeneration
20.
Int J Biol Macromol ; 253(Pt 3): 126946, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37722639

ABSTRACT

Camellia oleifera fruit shell (CFS), a waste lignocellulosic biomass resulting from Camellia oleifera oil production industry, is abundantly available in Southern China. Herein, to understand the structural variations of CFS lignins and lignin-carbohydrate complexes (LCC) during ripening, the native lignin and LCC fractions from CFS (harvested every seven days from October 1 to 30, 2022) were isolated and characterized systematically. The molecular weights of both MWL and DEL fractions steadily increased during ripening. CFS lignins contained abundance of ß-O-4' linkages (maximum of 58.6 per 100Ar in DEL-2), and had low S/G ratios (S/G < 0.6). Moreover, the amounts of ß-O-4' linkages in MWL, DEL, and LCC-AcOH fractions increased first and then decreased during ripening. The main lignin-carbohydrate linkages in the LCC-AcOH fractions were benzyl-ether (7.0-9.4 per 100Ar) and phenyl-glycoside (4.5-5.2 per 100Ar) bonds. Based on the quantitative results, the potential structural diagrams of lignins from different ripening stages of CFS were proposed. Additionally, the LCC-AcOH fractions exhibited pronounced antioxidant capacity and were promising as natural antioxidants. The properties and functions of lignin in plant cell walls, as well as its further appreciation, are crucial for the design and selection of feasible pretreatment strategies for the lignocellulosic materials.


Subject(s)
Camellia , Lignin , Lignin/chemistry , Fruit , Carbohydrates/chemistry , Glycosides , Antioxidants
SELECTION OF CITATIONS
SEARCH DETAIL
...